
LECTURE 17

Fundamental Models

Interfaces and Objects

 Interface definitions specify the set of functions available for
invocation in a server (or peer) processes.

 In OO paradigm, distributed processes can be constructed as
objects whose methods can be accessed by remote
invocation (COBRA approach).

 Many objects can be encapsulated in server or peer
processes.

 Number, types, and locations (in some implementation) of
objects may change dynamically as system activates require.

 Therefore, new services can be instantiated and immediately
be made available for invocation.

2

The Message Passing Paradigm

 Message passing is the most fundamental

paradigm for distributed applications.

◦ A process sends a message representing a

request.

◦ The message is delivered to a receiver, which

processes the request, and sends a message in

response.

◦ In turn, the reply may trigger a further request,

which leads to a subsequent reply, and so forth.

The message-

3

The Message Passing Paradigm -

2
 Message passing is the most fundamental paradigm for

distributed applications.

 A process sends a message representing a request.

 The message is delivered to a receiver, which processes the

request, and sends a message in response.

 In turn, the reply may trigger a further request, which leads to

a subsequent reply, and so forth. -

4

Process A
Process B

a message

Message passing

The Message Passing Paradigm -

3
 The basic operations required to support the basic message

passing paradigm are send, and receive.

 For connection-oriented communication, the operations

connect and disconnect are also required.

 With the abstraction provided by this model, the

interconnected processes perform input and output to each

other, in a manner similar to file I/O. The I/O operations

encapsulate the detail of network communication at the

operating-system level.

 The socket application programming interface is based on this

paradigm.

◦ http://java.sun.com/products/jdk/1.2/docs/api/index.html

◦ http://www.sockets.com/

5

http://java.sun.com/products/jdk/1.2/docs/api/index.html
http://java.sun.com/products/jdk/1.2/docs/api/index.html
http://java.sun.com/products/jdk/1.2/docs/api/index.html
http://java.sun.com/products/jdk/1.2/docs/api/index.html
http://java.sun.com/products/jdk/1.2/docs/api/index.html

Architectures Design Requirements

 Performance Issues:

◦ Considered under the following factors:

 Responsiveness:

 Fast and consistent response time is important for the users of interactive
applications.

 Response speed is determined by the load and performance of the server
and the network and the delay in all the involved software components.

 System must be composed of relatively few software layers and small
quantities of transferred data to achieve good response times.

 Throughput:

 The rate at which work is done for all users in a distributed system.

 Load balancing:

 Enable applications and service processes to proceed concurrently without
competing for the same resources.

 Exploit (مأثرة)available processing resources.

6

Architectures Design Requirements

 Quality of Service:

◦ Main system properties that affect the service quality are:

 Reliability: related to failure fundamental model (discussed later).

 Performance: ability to meet timeliness guarantees.

 Security: related to security fundamental model (discussed later).

 Adaptability: ability to meet changing resource availability and
system configurations.

 Dependability issues:

◦ A requirement in most application domains.

◦ Achieved by:

 Fault tolerance: continuing to function in the presence of failures.

 Security: locate sensitive data only in secure computers.

 Correctness of distributed concurrent programs: research topic.

7

Fundamental Models
 (Interaction Model)

 Distributed systems consists of multiple interacting
processes with private set of data that can access.

 Distributed processes behavior is described by
distributed algorithms.

 Distributed algorithms define the steps to be taken by
each process in the system including the transmission of
messages between them.

 Transmitted messages transfer information between
these processes and coordinate their ordering and
synchronization activities.

8

Fundamental Models
 (Interaction Model)

 Interacting processes in a distributed system are affected
by two significant factors:

1. Performance of communication channels: is characterized by:

 Latency: delay between sending and receipt of a message including

 Network access time.

 Time for first bit transmitted through a network to reach its destination.

 Processing time within the sending and receiving processes.

 Throughput: number of units (e.g., packets) delivered per time unit.

 Bandwidth: total amount of information transmitted per time unit.

 Jitter: variation in the time taken to deliver multiple messages of the
same type (relevant to multimedia data).

9

Fundamental Models
 (Interaction Model)

2. Computer clocks:

 Each computer in a distributed system has its own internal clock
to supply the value of the current time to local processes.

 Therefore, two processes running on different computers read
their clocks at the same time may take different time values.

 Clock drift rate refers to the relative amount a computer clock
differs from a perfect reference clock.

 Several approaches to correcting the times on computer clocks
are proposed.

 Clock corrections can be made by sending messages, from a
computer has an accurate time to other computers, which will
still be affected by network delays.

10

Fundamental Models
 (Interaction Model)

 Setting time limits for process execution, as
message delivery, in a distributed system is hard.

 Two opposing extreme positions provide a pair of
simple interaction models:
◦ Synchronous distributed systems:
 A system in which the following bounds are defined:
 Time to execute each step of a process has known lower and upper

bounds.

 Each message transmitted over a channel is received within a known
bounded time.

 Each process has a local clock whose drift rate from perfect time has a
known bound.

 Easier to handle, but determining realistic bounds can be hard or
impossible.

11

Fundamental Models
 (Interaction Model)

◦ Asynchronous distributed systems:
 A system in which there are no bounds on:
 process execution times.

 message delivery times.

 clock drift rate.

 Allows no assumptions about the time intervals involved
in any execution.

 Exactly models the Internet.
 Browsers are designed to allow users to do other things while they

are waiting.

 More abstract and general:
 A distributed algorithm executing on one system is likely to also

work on another one.

12

Fundamental Models
 (Interaction Model)

 Event ordering: when need to know if an event at one
process (sending or receiving a message) occurred before,
after, or concurrently with another event at another process.

 It is impossible for any process in a distributed system to
have a view on the current global state of the system.

 The execution of a system can be described in terms of
events and their ordering despite the lack of accurate clocks.

 Logical clocks define some event order based on causality.

 Logical time can be used to provide ordering among events
in different computers in a distributed system (since real
clocks cannot be synchronized).

13

Fundamental Models
 (Interaction Model)

14

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical

time

A

m3

receive receive

send

receive receive receive

t1 t2 t3

receive

receive

m2

m1

Real-time ordering of events

Fundamental Models
 (Failure Model)

 Defines the ways in which failure may occur in order to

provide an understanding of its effects.

 A taxonomy of failures which distinguish between the

failures of processes and communication channels is

provided:

◦ Omission failures

 Process or channel failed to do something.

◦ Arbitrary failures

 Any type of error can occur in processes or channels (worst).

◦ Timing failures

 Applicable only to synchronous distributed systems where time limits

may not be met.

15

Fundamental Models
 (Failure Model)

16

Process p Process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receive m

Processes and channels

Fundamental Models
 (Failure Model)

17

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Fundamental Models
 (Failure Model)

18

Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.

Performance Process Process exceeds the bounds on the interval

between two steps.

Performance Channel A message’s transmission takes longer than the

stated bound.

Fundamental Models
 (Security Model)

 Secure processes and channels and protect objects
encapsulated against unauthorized access.

 Protecting access to objects
◦ Access rights

◦ In client server systems: involves authentication of clients.

 Protecting processes and interactions
◦ Threats to processes: problem of unauthenticated requests /

replies.
 e.g., "man in the middle"

◦ Threats to communication channels: enemy may copy, alter
or inject messages as they travel across network.
 Use of “secure” channels, based on cryptographic methods.

19

Fundamental Models
 (Security Model)

20

Network

invocation

result

Client
Server

Principal (user) Principal (server)

Object Access rights

Objects and principals

Fundamental Models
 (Security Model)

21

The enemy

Communication channel

Copy of m

Process p Process q m

The enemy

m’

Fundamental Models
 (Security Model)

22

Secure channels

Principal A

Secure channel Process p Process q

Principal B

Fundamental Models
 (Security Model)

 Denial of service

◦ e.g., “pings” to selected web sites

◦ Generating debilitating network or server load so that

network services become de facto unavailable

 Mobile code:

◦ Requires executability privileges on target machine

◦ Code may be malicious (e.g., mail worms)

23

ASSIGNMENT

 Q: Explain various fundamental models in

distributed operating system.

24

